

Evidence-based Investment Decision Making for 3 Waters Networks (Pipe Renewals)

Version Control

Revision No.	Date	Description	Prepared by	Reviewed By	Approved by
1.0	14/10/2016	First scoping round	Daniel Johnson	Greg Preston	
2.0	10/11/2016	Release version 2	Greg Preston	Nick Walmsley	Greg Preston

Acknowledgements

This road map was based on a workshop held at the University of Canterbury in February 2016. Participants were:

- Philip McFarlane, Opus
- Dukessa Blackburn-Huettner, Auckland Council
- Arnold Louw, Fletcher Infrastructure
- Cherie Leckner, Fulton Hogan
- Haydn Read, Wellington City Council
- Peter Whitehouse, Water New Zealand
- Tom Osborn, Dunedin City Council
- Braden Austen, Palmerston North City Council
- Bruce Apperly, CERA
- Geof Stewart, Watercare
- Matthew Hughes, University of Canterbury
- Melanie Liu, University of Canterbury
- Mark Christison, Beca
- David Heiler, Beca
- Dave Bain, SCIRT
- Richard Wesley, SCIRT
- Americo Dos Santos, Hynds Ltd
- Rob Blakemore, Wellington Water
- Paul Utting, Project Max Ltd
- Assad Shamseldin, University of Auckland
- Robert Finch, Quake Centre
- Kalley Simpson, Waimakariri District Council
- Roger Fairclough, Treasury

Facilitator Greg Preston, Quake Centre

Initial report drafted by: Daniel Johnson, Opus International

Copyright:

The information contained in this Manual is given in good faith and has been derived from sources believed to be reliable and accurate, however, neither the organisation of Water New Zealand nor any person involved in the preparation of this publication accept any form of liability whatsoever for its contents. No part of this document may be reproduced, stored in any retrieval system, or copied in any way, without the prior written permission of Water New Zealand.

Published by:

Water New Zealand | PO Box 1316, Wellington 6140 | P: +64 4 472 8925 | E: enquiries@waternz.org.nz | W: www.waternz.org.nz

ISBN: 978-0-473-38194-3 (PDF)

Table of Contents

Executive Summary	3
Introduction	4
Project Prioritisation	6
Breakdown of Work Packages and Associated Literature	10
Condition	11
Repairs and Maintenance (Operations)	22
Resilience	26
Vulnerability	28
Design Performance	30
Financial Performance	32
Service Performance	36
The Implementation Plan	39
Work Package	41
Quick Wins	
Summary	44

Appendix A – Pipe Renewals Future Project Initiatives

Executive Summary

The Evidence Based Investment Decision Making for 3 Water Pipe Network Programme (Pipe Renewals Guidelines Programme) initiated by Quake Centre, IPWEA and Water New Zealand (Water NZ) will develop guidance documents and tools to assist New Zealand's water organisations to make nationally consistent, evidenced-based decisions relating to the management and renewal of their 3 Water Pipe Networks. The programme covers inspection, maintenance and renewal strategies for pipework in potable water, wastewater and stormwater systems.

The tools and guidance documents developed through these initiatives will form a framework that can be used in conjunction with the International Infrastructure Management Manual (IIMM) and the New Zealand Asset Metadata Standards project to implement advanced asset management processes to produce investment strategies that optimise cost, risk and level of service. They will enable organisations to assess the implications of adopting alternative investment strategies and select the strategy that best suits the needs of their community.

Benefits of this programme include:

- Better performing assets and higher returns on investment
- Potentially large cost savings in renewals budgets
- A better understanding of risks and contingent liabilities
- Improved transparency in the decision-making process

This document presents 46 project initiatives that comprise the overall programme and one integrating decision support theme. Of these projects a number have been prioritised such that they could be implemented over the next 3-5 years. A steering group rationalised the number of projects based on level of importance and ease to the following areas:

- Integrated decision making framework
- Condition
- Repairs and Maintenance
- Service Performance
- Resilience
- Design Performance
- Financial Performance

An implementation plan has been developed to determine level of priority for each project based on three measures; ease, level of importance and level of impact. To support the delivery and funding of projects these projects have been grouped into work packages.

The initial literature search identified a series of available polices, guidelines and documentation which will support the early implementation of part of the pipe renewals framework. Based on existing knowledge and priority it is recommended the following projects are progressed first:

- Decision making support tool
- Pipe data management
- Pipe inspection and condition framework
- National Pipe Database
- Pipe sample recovery
- Useful life deterioration curves
- Definition of pipe failure and National Pipe Failure Database
- Pipe performance measures

This version 2.0 report will be updated as projects are undertaken and new information becomes available.

Introduction

The Pipe Renewals Guidelines Programme initiated by UC Quake Centre, IPWEA and Water New Zealand (Water NZ) will develop guidance documents and tools to enable New Zealand's water organisations to make nationally consistent, evidence-based decisions in regards to pipe network operational and capital expenditure. The programme covers inspection, maintenance and renewal strategies for pipework in potable water, wastewater and storm water systems.

Building on the framework developed at a workshop at the University of Canterbury in February 2016, the 'Pipe Renewals Guidelines Literature Search – Schedule of Works' July-2016 report produced by Opus International Consultants (Opus) set out a framework which is aligned to the New Zealand Metadata Standards, taking into account existing knowledge and practices, and presents a roadmap for implementing improvements in knowledge and practice.

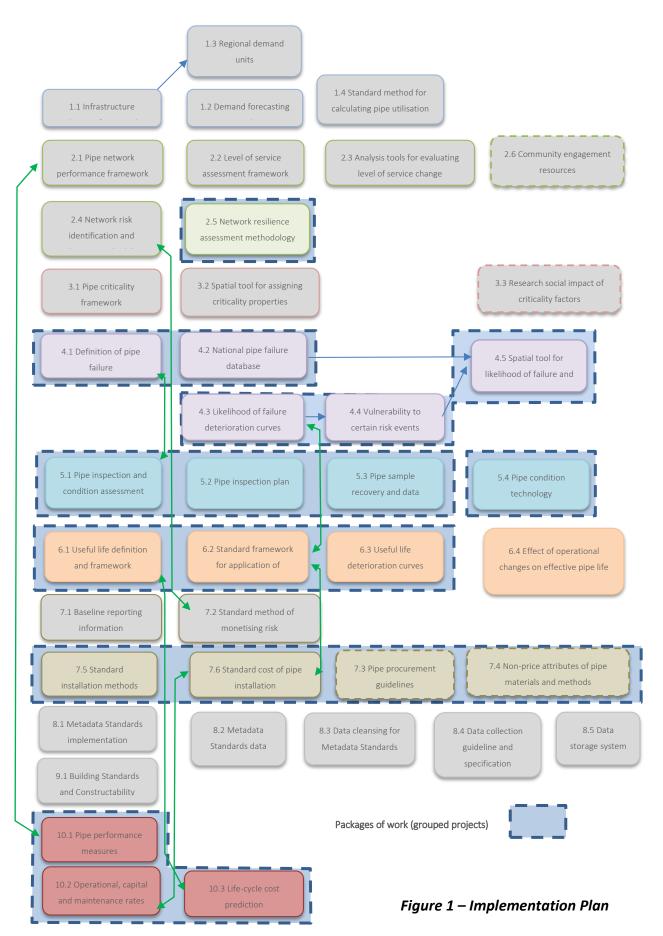
The roadmap presents 46 project initiatives that could be implemented over the coming years, as shown in Figure 1. A description of each initiative was provided outlining what is required, why it is necessary and the recommended approach for developing the initiative.

A workshop was held with the Governance and Technical Oversight committees (The Committee) to provide feedback on the Pipe Renewal Guidelines Report and the way forward. The implementation plan was considered comprehensive but too large at this stage and would need rationalising in order to allow funding to be assigned and the overall framework delivered.

The group identified the need to rationalise the number of projects, thus prioritising the order of implementation based on level of importance and ease. The key themes identified for prioritisation were based around:

- Integrated decision making framework
- Condition
- Repairs and Maintenance
- Service Performance
- Resilience
- Design Performance
- Financial Performance

MBIE & LINZ are implementing a project to explore the implementation of shared data standards (Metadata Standards) for water infrastructure, roads and built assets (buildings). Metadata standards will provide data consistency. They will enable data to be shared, aggregated and analysed in more detail than is currently possible in a standardised and harmonised manner.


Figure 2 shows the global metadata schemata and how the standards sit in context with the wider asset management framework. Each layer has a role in the development of an integrated, learning asset management environment. Volumes 1 & 2 are being drafted under the Metadata project. The Pipeline Renewals Programme will contribute to Volumes 3, 4 & 5 as discussed in the following section of this report.

The Pipe Renewals Guidelines framework will concentrate on the analysis of data to improve the understanding of the behaviour of pipe networks, the development of analytics to predict future situations and the development of an asset management framework specifically tailored to water pipelines. The programme will integrate with the LINZ Metadata programme and existing asset management practices such as the International Infrastructure Management Manual and ISO55000.

Figure 1 presents the Implementation plan and the prioritised projects identified in the workshop, these have been grouped as work packages for delivery.

A Framework for Decision Making

Figure 1 demonstrates the interdependencies of various themes. In addition to this there is a need for a central cross-theme decision support tool to integrate the outputs from the various themes. This will provide a dashboard approach to inform investment decision-making as well as:

- Defining the information output requirements from each theme
- Defining a methodology for integrating that information
- Allowing sensitivity analysis in respect to the information
- Providing a guide to the prioritisation of the future work streams.

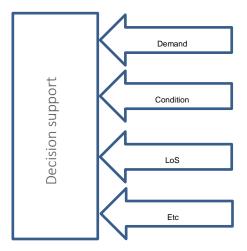


Figure 2 – Decision support as a central theme

Project Prioritisation

The Committee at the review workshop discussed the first draft of the 'Pipe Renewals Guidelines Literature Search – Schedule of Works' report, and highlighted the need to prioritise projects, as the proposed implementation plan was considered too extensive. The committee identified the following projects for prioritisation as a first pass, these are listed below:

• Condition:

- Pipe Inspection and Condition Assessment Framework
- Pipe Inspection PlanPipe Sample Recovery and Data Management
- Pipe Condition Technology
- Likelihood of failure deterioration curves
- Definition of Useful Life
- > Standard framework for application of remaining useful life
- Useful life deterioration curves
- Repairs and Maintenance (Operations):
 - Definition of pipe failure
 - National pipe failure database
- Non-price attributes of pipe materials and methods

Service Performance:

Pipe performance measures

Resilience:

- Network resilience assessment methodology and improvement opportunities
- Vulnerability (Could be classified with Risk):
 - Vulnerability to certain risk events
 - Spatial tool for assigning vulnerability and likelihood of failure

Design Performance:

Standard Installation Methods

Financial Performance:

- Pipe procurement guidelines
- > Standard cost of pipe installation
- Operational and maintenance rates
- Lifecycle cost prediction

A separate business case has been submitted for the implementation of the Metadata Standards Project, therefore at this time no metadata standard projects have been identified as priority projects for the development of pipe renewals guidelines.

Each of the identified projects listed above are presented in more detail in the following section of this report, highlighting what is required, the benefits and recommended approach. An assessment on where New Zealand is in relation to the Metadata Standard Schema is presented in Figure 3, showing the current knowledge and gaps against volume 3 and volume 4 of the metadata standards.

Volume 3 will describe intervention methodologies to determine the current state and performance of assets. For example Volume 3 will describe methodologies for determining the condition of pipelines. Whereas volume 4 will include analytical methods to predict the condition and performance of assets, to determine when and where to undertake the interventions described in Volume 3 and to assess the implications of adopting alternative investment strategies with regard to cost, risk and level of service.

Using a traffic light system, Figure 3 gives the approximate status for each schema, such as condition. The green indicates what documentation exists and could be used right now with some minor amendments. Yellow represents the projects likely to be delivered as a priority, and red those projects which should be implemented in the future.

A first cut of the priority projects has been undertaken to rank projects based on:

- Ease Is it reliant on other projects, does it require a significant amount of work to produce
- Level of importance Value it will provide such as better use of data or decision making •
- Level of impact How quickly will it provide results or a direct benefit

A scoring system of 1 to 3 has been applied to each of the three categories with:

- 1 being relatively straight forward to implement or high importance/impact
- 2 some work required and reliant on other projects, or medium importance/impact; and
- 3 reliant on more than one project, or low importance/impact

A second cut of priorities is required based on the highest value inputs to the Cost, Risk and Level of Service Decision Support Process. Projects categorised as future are not included within the main body of this report and are located in Appendix A for reference.

Project summaries in Appendix A are limited in scope and reference documents. However the information provided is sufficient to commence reviews of prioritisation. As each project is implemented it will be further reviewed and the scope expanded to a full project summary suitable for tendering with an associated update to the version number. This document will remain live and as each project is scoped this document will be updated and a version number applied to each theme.

Impacts of operational decisions

Operational decisions and conditions can have a significant impact upon the effective life and Level of Service delivered by an asset. Operational parameters are not considered in this iteration of the programme. However, changes to asset operation should be considered alongside the decision making process of maintenace and renewals. A place-holder theme of: *Operational Impacts on Effective Pipe Life* has been included in this document for later consideration.

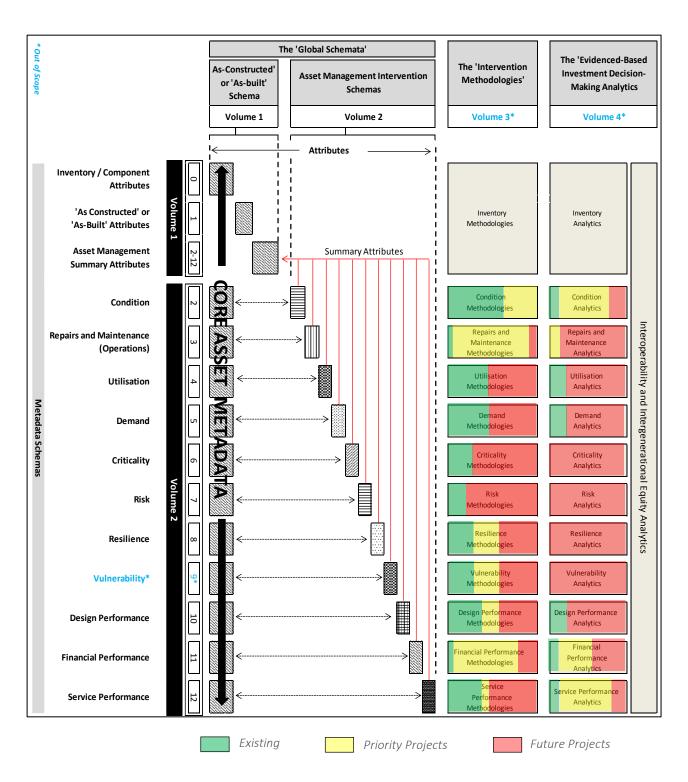


Figure 3 - Global Asset Metadata Schema - Documentation and Project Alignment

Breakdown of Work Packages and Associated Literature

Decision support (Version1.0)

Current Status / Knowledge

PROJECT	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
Metadata Standards Volume 1 and 2	LINZ			Provides data standards/requirements Intervention methodology and Evidence based decsions to be developed as part of stage 3 and 4
dTIMS Water – Optimised renewal and maintenance programmes for 3waters	Infrastructure Decision Support (IDS) / IPWEA		✓	Predicts number of expected break rates and likelihood of failure. Deterioration curves applied which need testing on a wider dataset and refined to allow for other factors such as ground conditions, pipe size/material.
IIMM	NAMS / IPWEA	√	✓	Provides asset management framework consistent with ISO 55000 suite

PROJEC NO.	T TITLE	PROJECT TYPE		IMPLEMENTATION PR	IMPLEMENTATION PRIORITY			ING	PROJECT HOURS
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE '

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	RIORITY	WHO	TIM	IING	PROJECT HOURS
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE
0.1_v1	Decision support process for pipe renewals planning	Evidence Based Decision	√	√	✓				
What	To develop: The process for integrating and Asset Management Plant A user tool to undertake a	ans (AMPs)	·	enewals Framework to s	upport evidence	based dec	ision making fo	or 30-Year Infr	astructure Strategies
Why	 To provide a nationally co Improving the level of con Prioritise the intervention Test key assumptions Prioritise future developm 	fidence in 30-Year In	frastructu	os changes					
Approach	 Assess suitability of other Develop a strawman proce Workshop with key indust Beta develop spreadsheet Test, present, feedback fo Scope out open scourced 	ess ry stakeholders based version zero r update		rds					

Condition (Version 1.0)

Metadata definition - The physical state of the asset, which may or may not affect its ability to deliver the service designed to perform.

Current Status / Knowledge

	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
Pipe Inspection Manual 3 rd Edition (Currently being updated)	Water New Zealand / ProjectMax	✓		Good practice guideline for the investigation of wastewater and stormwater gravity pipelines, using Closed Circuit Television (CCTV).
National Asbestos Cement Pressure Pipe Manual (Currently being updated)	Water New Zealand / Opus	✓		Good practice guideline for determining current pipe condition and likely remaining life of Asbestos Cement (AC) pressure pipelines.
Inspection and test plan preparation for pipeline condition assessment	Opus	✓		Standard approach for the development of an inspection and test plan for water and wastewater pipelines (has been applied to a number of smaller TLAs)
Crush testing pipe for condition assessment purposes	Opus	✓		Good practice guideline for crush testing pipe samples to determine condition and remaining life
Materials Pipe Cohort Tables	Opus (developed for Dunedin CC)	√		Set of pipeline parameters for standardisation, data cleansing and developing pipe condition assessment programmes.
Risk based approach to assign condition grading	ProjectMax / Opus (developed for Auckland Council)	√		Developed alternative method of applying condition grading to pipelines, based on likelihood of failure (different to inspection

	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
				manual)
Risk based approach for predicting likelihood of failure of Stormwater assets	Opus (developed for Auckland Council)		√	Developed likelihood of failure for Auckland Council Stormwater gravity pipelines, predicts when to intervene using risk based approach and the likelihood to failure.
dTIMS Water – Optimised renewal and maintenance programmes for 3waters	Infrastructure Decision Support (IDS) / IPWEA		√	Predicts number of expected break rates and likelihood of failure. Deterioration curves applied which need testing on a wider dataset and refined to allow for other factors such as ground conditions, pipe size/material.
Sewer Rising Main & Risk Management Manual	WSAA, Australia	✓	✓	Provides guidance on condition assessment and risk management strategies being applied within Australia. Improved analytical and predictive tools.
Condition Assessment Guidelines Stage 1 & 2	WSAA, CSIRO, WERF, WRf (Australia – Lead)	√		Review of condition assessment techniques in the Australian urban water industry and international case studies (UK & US)

PROJECT	TITLE	PROJECT TYPE	١	MPLEMENTATION PR	IORITY	WHO	TIMII	NG	PROJECT HOURS
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	IORITY	WHO	TIMING		PROJECT				
NO.			EASE LEVEL OF LEVEL OF IMPACT				DURATION	START- DATE	HOURS ESTIMATE				
5.1_v1	Pipe Inspection and Condition Assessment Framework	Intervention Methodology	1	Pipe condition and inspection experts / water engineer									
What	condition parameters (advantages, limitatio	A framework to outline the recommended pipe inspection methods for assessing condition / remaining useful life with basic principles and guidance on setting condition parameters for different pipe material and genre. The framework will clearly set-out pipe inspection techniques used for different pipe materials (advantages, limitations and sensitivity), where best to apply them and how to interpret the results and allocate a condition grade in accordance with the Metadata Standards definitions.											
Why						ondition assessment for pi .). Supports implementat							
Approach	 Literature search and review of available research to verify and validate current pipe inspection/ condition assessment techniques, advantages, limitations and outputs/results Develop a national guideline for the application of pipe inspection methods across different pipe materials detailing where and how to apply them 												
	Guide for assign	ing pipe condition rati	ng in acco	rdance with metadata	a standard defir	nitions, based on inspectio	n method and th	ne interpreting	g of results.				

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	IORITY	WHO	TIMII	PROJECT	
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	HOURS ESTIMATE

5.2_v2	Pipe Inspection Manual	Intervention Methodology	1	1	2	Pipe condition and inspection experts / material scientist/ asset planner			300				
What	· ·	Good practice guidelines on the development and implementation of a pipe inspection and test planning process and quantities. Includes typical inspection test plans for small, medium and large pipe networks.											
Why	the type and		ely to be a	generated for the diffe		vo methods, opportunistic and rials and where best to use each							
Approach	 Procedure for establishing a pipe inspection programme based on network type size and materials Set our rules / guidance for number of samples based on network type/size considering performance/risk/criticality/vulnerability/etc. Provide costs for type of condition assessment i.e. \$/m to allow financial budgets to be set 												

PROJECT	TITLE	PROJECT TYPE	III	MPLEMENTATION PR	IORITY	WHO TIMING			PROJECT HOURS		
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE		
5.3_v1	Pipe Sample Recovery and Data Management	Intervention Methodology	1	1	1	Pipe condition and inspection experts / Material scientist/ geotechnical specialist			450		
What	A standard procedure to be followed for the removal of pipe samples and soil samples associated with pipe networks. The procedure is to be used by those										

PROJECT	TITLE	PROJECT TYPE	ll ll	MPLEMENTATION PR	RIORITY	WHO	TIMII	NG	PROJECT			
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	HOURS ESTIMATE			
	involved in either o	oportunistic removal	of pipe sa	amples or removal o	f selected pipe	samples in support of a renewal p	orogramme.					
Why		m of the procedure is to standardise the requirements of the pipe sample removal and data capture process throughout to ensure that a consistent system trolling and managing the data is developed and maintained.										
Approach	 Identify areas for the procedures and the procedures and the procedures and the procedures are the procedure of the procedure of	n and Safety procedu g and removing pipe bing and tagging the recording of Ope	r improved or pipe sai res / Peri samples erational a	d confidence for decomple recovery method mit to work (i.e. AC Pipe Waterm	ision making a od to Define pl nain Manual) ult data, includi	ctivities anned and opportunistic pipe data ing the collection, storage (Asset N red to maintain and upgrade the a	Management In	ıformation Sy				

PROJECT NO.	TITLE	PROJECT TYPE		IMPLEMENTATION PR	RIORITY	WHO	TIMI	NG	PROJECT HOURS ESTIMATE	
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	LSTIMATE	
5.4_v1	Pipe Condition Technology	Intervention Methodology	2	1	2	Consultant / Industry/ Water NZ technical group			400	

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	RIORITY	WHO	TIMI	NG	PROJECT HOURS			
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE			
What	Register of pipe	e inspection methods to	o capture	existing and new tec	hnology, detailir	g level of confidence, accurac	y and recomme	ended use i.e	. pipe material			
Why	To ensure new	To ensure new technology is captured and regulated to ensure users are informed of the what is approved technology and its capabilities										
Approach	• Establish a	New Zealand Technica	l Commit	tee responsible for m	anaging new ted	hnology and innovation						
	• Establish lir	nks and work with othe	er organis	ations to share exper	ience with techr	ology and innovation i.e. Univ	ersities, AWWA	A, UKWIR				
	• Set up a W	Establish links and work with other organisations to share experience with technology and innovation i.e. Universities, AWWA, UKWIR Set up a Water NZ site listing recommended technology – status approved, not approved, not tested etc.										
	• List of reco	mmended contractors	and supp	oliers that can provide	pipe condition	assessment						

PROJECT	TITLE	PROJECT	ا	MPLEMENTATION PR	IORITY	WHO	TIMII	NG	PROJECT					
NO.		TYPE	EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	HOURS ESTIMATE					
4.3_v1	Likelihood of failure deterioration curves	Evidence Based Decision	2	1	1	Consultants / Manufacturers / Contractors /Researchers / statistician			1000					
What		Creation of deterioration curves that predict the likelihood of various pipe failures. This work is closely related to deterioration curves of other tasks that predict remaining useful life, physical pipe performance, financial performance, and level of service performance												
Why	Knowledge of pipe	failure likelihood	will inforr	n all predictive analy	sis and planning	g for pipe renewals								
Approach	Create a set of	curves to be used	d and test	ed in the first instanc	ce based on ava	ilable international literature and p	oractice							
	Determine the	most influential f	actors th	at affect the likelihoo	d of pipe failur	2								
	 Further resear 	ther research into the relationships to determine relationships between the most influential factors and pipe failure rates												
	 Update curves 	pdate curves based on the further research findings												

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	RIORITY	WHO	TIMI	NG	PROJECT HOURS ESTIMATE	
NO.			EASE	EASE LEVEL OF LEVEL OF IMPORTANCE IMPACT			DURATION	START- DATE	ESTIMATE	
6.1_v1	Definition of	Intervention	1	1	1	Consultant/ Manufacturer/ Asset			80	

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	IORITY	WHO	TIMI	NG	PROJECT HOURS				
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE				
	useful life	Methodology				manager							
What	· ·	Develop a definition of useful life for each of the 3 waters to account for the financial impact of operating a pipe with poor performance vs the cost of renewal or rehabilitation. Also to take into account risk profiles											
Why	To provide a	common understandin	g of usefu	ul life that subsequent	tasks are found	ed on the same definitions							
Approach	Review i	Review international literature and practices relevant to useful asset life, especially for pipes											
	• Develop												

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	IORITY	WHO	TIMII	NG	PROJECT				
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	HOURS ESTIMATE				
6.2_v1	Standard framework for application of remaining useful life	Intervention Methodology	2	1	1	Financial/ asset management / researchers			400				
What	·	A standard process for how pipe network authorities should plan activities based on useful life pipe data. The development of guidelines that recommend ntervention points (eg when to inspect, budget for replacement and take action) for pipes depending on remaining useful life and cost/benefit scenarios											
Why	To provide a financially	y sound process for in	terventio	n points that are evid	ence based and	associated with remainin	g pipe useful life	2					
Approach	Financial researchFinancial research	Develop a theoretical framework for intervention points based on international literature and practice Financial research into best practice and standard methods for monetising pipe risk profiles Financial research project on the cost benefit of intervention points for 3 waters pipes to determine optimal timing Update framework based on financial research											

PROJECT	TITLE	PROJECT		MPLEMENTATION PR	IORITY	WHO	TIMII	NG	PROJECT				
NO.		TYPE	EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	HOURS ESTIMATE				
6.3_v1	Useful life deterioration curves	Evidence Based Decision	2	1	1	Consultants / Manufacturers / Contractors /Researchers / statistician			1000				
What		Creation of deterioration curves that predict the useful life of various pipe failures. This work is closely related to deterioration curves of other tasks that predict likelihood of failure, physical pipe performance, financial performance, and level of service performance											
Why	Knowledge of pip	oe useful life will ir	nform all	oredictive analysis an	d planning for p	ipe renewals							
Approach	• Create a set	of curves to be us	ed and te	ested in the first insta	nce based on av	vailable international literature and	practice						
	Determine to	he most influentia	l factors t	hat affect pipe usefu	l life								
	• Further rese	her research into the relationships to determine relationships between the most influential factors and pipe useful life											
	• Update curv	date curves based on the further research findings											

Repairs and Maintenance (Operations) (Version 1.0)

Metadata definition - Activities undertaken to ensure the asset continues to deliver its intended design performance.

Current Status / Knowledge

PROJECT	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
Earthquake demand to pipelines (white Paper)	Opus	✓		Looks at examples of pipe failure modes on different pipe materials following the Christchurch earthquakes
Pipe Damage Assessment Tool	SCIRT	√		Tool developed to enable quick and efficient assessment of actions required on assets.
Overseas experience	LA Water/ San Francisco/ Japan et.			

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PRIORITY			TIMING		PROJECT HOURS
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE
4.1_v1	Definition of pipe failure	Intervention Methodology	1	1	1	Consultant			60
What	Develop a definit blockage	Develop a definition of pipe failure for each of the 3 waters to account for different mechanisms that each constitute "failure" e.g. pipe break, collapse, blockage							

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PRIORITY		WHO	TIM	ING	PROJECT HOURS ESTIMATE			
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE			
Why	To provide a con	To provide a common understanding for pipe failure so that subsequent tasks are founded on the same definitions										
Approach		Review international literature and practices relevant to pipe failure definitions Develop a definition of pipe failure that is complete for all failure modes and for each of the 3 waters										

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION	I PRIORITY	WHO	TIM	1ING	PROJECT HOURS		
NO.			EAS E	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START-DATE	ESTIMATE		
4.2_v1	National pipe failure database	Intervention Methodology	2	1	1	Industry / Research / Consultan t / Asset owners			800		
Wha	t A single source	A single source database for storing pipe failure information for all New Zealand pipe network authorities									
Wh	failure rates t	To provide a common database where pipe failure rates and trends can be investigating using data from all of New Zealand. The database will allow pipe failure rates to be analysed for pipes of varying physical states and will inform analytics within other related schemas. Provides a common standard for reporting and describing failures.									
Approacl		Create a database for NZ wide failure reporting Pilot test database through importing legacy failure records where available									

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION	PRIORITY	WHO	TIM	1ING	PROJECT HOURS
NO.	NO.		EAS E	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START-DATE	ESTIMATE
Develop a		a standard method for r	eporting	and describing failures					
	Roll out t	to pipe network authorit	ies with s	supporting software					

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	RIORITY	WHO	TIMI	NG	PROJECT HOURS		
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE		
7.4_v1	Non-price attributes of pipe materials and methods	λ (III) κεςearch (ΔΙΙΙ)									
What	Research the whole of life of method	Research the whole of life cost impact of choosing different pipe materials or construction methods in comparison to the lowest conforming price materials and method									
Why	To quantify the economic b	enefit of using material	ls and me	thods that may not be	the lowest outtu	ırn cost or are	e less common				
Approach	Publish a guideline doc	 Research of life cycle costing between alternative materials and methods including ability to maintain and repair Publish a guideline document available to industry that sets out the benefits, issues and appropriateness of various alternative materials and methods 									

Operations (Version 0.0)

Metadata definition – Not currently defined in metadata schema

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	RIORITY	WHO	TIMI	NG	PROJECT HOURS ESTIMATE		
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE		
6.4_v1	Effect of operational changes on effective pipe life										
What	Understanding the opportun	Understanding the opportunities, risks, Levels of Service change and costs of changes to operations to improve the useful life of an asset.									
Why	Significant cost savings may b	e made to both Opex a	nd Capex	through changing the	operationg condi	tions to w	hich a pipe is su	ubjected			
Approach	Curation of a library of o	perational changes that	can effec	t pipe performance							
	Publish a guideline docu	Publish a guideline document available to industry that sets out the benefits, issues and appropriateness of various operational changes									
	Will require updating as	new information flows	from analy	sis of pipe failure data	abase						

Resilience (Version 1.0)

Metadata definition – The potential disruption of an asset to deliver the service as was intended upon design.

Current Status / Knowledge

PROJECT	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
Liquefaction Impacts on Pipe Networks	UC Cicil & Natural Resources Engineering			Presents the outcomes of Short Term Recovery Projects (STRP), impacts if liquefaction on pipe networks, which focused on the impacts of liquestaction on the potable water and wastewater systems of Christchurch.
Earthquake demand to pipelines (white Paper)	Opus	✓		Looks at examples of pipe failure modes on different pipe materials following the Christchurch earthquakes
International Infrastructure Management Manual	IPWEA			Guidance on Assessing Infrastructure Resilience (3.2.8)

PROJECT	TITLE	PROJECT TYPE		MPLEMENTATION PR	RIORITY	WHO	TIMII	NG	PROJECT		
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	HOURS ESTIMATE		
2.5_v1	Network Resilience Assessment Methodology and Improvement Opportunities	lethodology and Improvement Intervention 2 1 1 Research / 750									
What	Develop a methodology for ass	Develop a methodology for assessing the degree of resilience of a pipe network and identifying potential improvements along with associated costs and benefits									
Why	To promote wider understanding pipe network intervention strate	-	ice and th	e costs and benefits	of potential stra	ategies for improvii	ng the resilienc	e of pipe net	works, to inform		
Approach	Define 'resilience' in the co	ontext of three waters	s services								
	Research and engage with	communities to unde	erstand ex	pectations around n	etwork resiliend	ce and service deliv	ery				
	 Identify key factors underly 	Identify key factors underlying the provision of resilient pipe network infrastructure									
	Establish and test assessment	Establish and test assessment methodologies that can be used to provide a measure of network resilience									
	Research and identify current	ent strategies for imp	roving pip	pe asset resilience an	d evaluate pote	ential costs and ber	efits				

Vulnerability (Version 1.0)

Metadata definition – To be confirmed

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	RIORITY	WHO	TIM	ING	PROJECT HOURS			
NO.	Vulnerability to certain Intervention		EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE			
4.4_v1	Vulnerability to certain risk events	Y Research XIII										
What	Determine how vulner	Determine how vulnerable pipes of varying conditions are to a range of expected risk events										
Why	This research provides	the key link between co	ndition ar	nd performance for a ra	inge of events as	defined unde	r the Metadata	standards risk	schema			
Approach	Determine which	events are most importa	ınt to inve	estigation, e.g. earthqua	ike, rain events							
	'	Develop a number of relationships between condition and performance for each of the events in the first instance based on available international literature and practice										
	Further NZ specifi	Further NZ specific research into the relationships to determine relationships between events and pipe failure rates										
	Provide equations	/tables/methods to dete	ermine vu	Inerability rates for eac	h of the events re	esearched						

NO	PROJECT HOURS
NO. EASE LEVEL OF LEVEL OF IMPACT	TART- DATE

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	IORITY	WHO	TIMI	NG	PROJECT HOURS	
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE	
4.5_v1	Spatial tools for assigning vulnerability and likelihood of failure Intervention Methodology 2 1 1 1 Consultant 400								400	
What	Developing a spatial tool to as	sign vulnerability and l	ikelihood	of failure to pipes bas	sed on spatial fe	atures				
Why	A spatial tool allows vulnerabil	A spatial tool allows vulnerability and likelihood to be assigned automatically and provides efficiencies particularly for large networks								
Approach	Determine the factors that	Determine the factors that will be linked to vulnerability and likelihood in the spatial tool								
	Develop the tool and test	over a number of diffe	erent net	works						

Design Performance (Version 1.0)

Metadata definition - The ability of the asset to deliver the service within the functional limits as was intended upon design.

Current Status / Knowledge

PROJECT	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
Approved Code of Practice for Excavations and Shafts for Foundations	WorkSafe NZ			
AS/NZS Pipe installation standards	Various standards			including but not limited to: 2566 Buried flexible pipes 3725 Design and installation of buried concrete pipes 2032 Installation of PVC pipe systems 2033 installation of polyethylene pipe systems 3690 Installation of ABS pipe systems 2041 Buried corrugated metal structuresNZS 7643 Code of practice for the installation of unplasticized PVC pipe systems
SCIRT pipelining specification	SCIRT, NZ			

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PF	RIORITY	WHO	TIMI	NG	PROJECT HOURS			
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE			
7.5_v1	Standard Installation Methodology 1 2 1 Consultant / Industry 400											
What	Provide a standard	pipe installation metho	d for vari	ous pipe materials and	ground condition	ns						
Why	Seeking efficiencies	s by standardising const	ruction m	ethods. Improves qua	lity assurance of i	nstallation methods	by standardisin	g approaches				
Approach		Research current methods of installation										

Financial Performance (Version 1.0)

Metadata definition - The ability of the asset to deliver the service within the financial limits as was intended upon design.

Current Status / Knowledge

PROJECT	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
Gold Coast Water – Unit rates review 2008	Gold Coast City Council	√		Cost estimates for the delivery of water and wastewater infrastructure based on a set of unit rates for pre-defined asset types, with an allowance for variations in cost affecting factors such as soil type. These rates are typically used in a wide range of cost estimation applications, including infrastructure planning and income modelling requirements.

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	IORITY	WHO	TIMI	NG	PROJECT HOURS			
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE			
7.3_v1	Pipe Procurement Guidelines and Standard Specifications	\mathcal{L}										
What	Production of a guideline on	Production of a guideline on different procurement methods with commentary on when and why to use each different method										
Why	To provide a single source of so that efficiencies can be ac		urement	methods to give oppo	ortunities for dif	ferent procureme	nt models to be	e adopted wh	nere appropriate			
Approach	 Research of international literature and practices for different pipe procurement models to determine which models may be appropriate for NZ Further research into the benefits and issues with the possible procurement models Publish a guideline document available to industry that sets out the benefits, issues and appropriateness of various procurement models (as well as presenting findings to industry groups, councils, conferences etc) Coordinate manufacturers and territorila authorities to develop a national specification 											

PROJECT	TITLE PROJECT TYPE		IMPLEMENTATION PRIORITY			WHO	TIMI	NG	PROJECT HOURS
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE
7.6_v1	Standard cost of pipe installation	Intervention Methodology	2	1	2	Consultant / Industry			400
What	Provide a standard (Provide a standard costing regime for pipe installation							

PROJECT	TITLE	PROJECT TYPE	IMPLEMENTATION PRIORITY			WHO	TIMI	NG	PROJECT HOURS
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE
Why	Reduce variance in	pipe installation costs. F	Reduce va	riance in the calculatic	on of replacemen	t costs of pipes.			
Approach	 Research current methods of pipe costing Publish a pipe installation costing guideline document to industry 								

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	IORITY	WHO	TIMING		PROJECT HOURS
NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE
10.2_v1	Operational, Capital and Intervention Maintenance Rates Methodology		2	1	1	Research			700
What	Unit rate guide for operational and maintenance actions and capital expenditure for pipe renewals and rehabilitation methods.								
Why	To provide robust and qua	lity data for whole life c	ycle costi	ng					
Approach	Review OPEX and CAPEX methods and cost rates across New Zealand								
	Develop a standard rate for typical O&M procedures (jobs)								
	Develop cost rate for	intervention options cor	nsisting of	f opex and capex soluti	ons				

	PROJECT	TITLE	PROJECT TYPE	IMPLEMENTATION PRIORITY	WHO	TIMING	PROJECT HOURS	
--	---------	-------	--------------	-------------------------	-----	--------	---------------	--

NO.			EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE
10.3_v1	10.3_v1 Life-Cycle Cost Prediction Evidence Based Decision 2 1 1								700
What	A procedure whic of opex and capes	•	most app	ropriate solution to netv	vork problems by c	considering vari	ous types of int	ervention opti	ons mainly consisting
Why	Cost effective app	proaches can be utilised	l to deter	mine the most appropri	ate least whole life	cost option			
Approach	 Literature search to identify what tools/approaches are available for assessing expenditure based on intervention methods i.e. IDS approach Develop financial tool to predict opex /capex methods 								

Service Performance (Version 1.0)

Metadata definition - The ability of the asset to deliver the service within the levels of service limits as was intended upon design.

Current Status / Knowledge

PROJECT	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
Non-Financial Performance Measures Rules 2013	Dept Internal Affairs			Establishes a set of mandatory performance measures for local authorities to use when reporting to their communities. Comment (PC) Measures adopted for reporting may not be complete/or appropriate for use in the context of assessing investment decisions with respect to community outcomes and level of service.
National Performance Review	Water New Zealand			Annual performance review and benchmarking of local authority delivery of 3 waters services. Aligned with Non-Financial Performance Measures Rules 2013
International Infrastructure Management Manual (2015)	IPWEA / NAMS			A foundation document for asset management practice as generally adopted/promoted in NZ. Section 2.2 Covers Establishing Levels of Service and includes case studies.
Levels of Service & Community Engagement	IPWEA			Levels of Service are the building blocks for infrastructure asset management. Proper understanding about the levels of service is a basic requirement to effectively provide services from infrastructure. The best results are when the

PROJECT	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
				community understands their infrastructure needs, delivered at affordable levels.
Level of Service Performance Measures for Seismic Resilience of Three Waters Network Delivery	Quake Centre	✓		The Levels of Service Performance Measures for the Seismic Resilience of 3 Waters Network Delivery provides a framework which may be used by engineers and asset managers to define the current or potential operating stage of any part, or parts, of a 3 waters network in the event of, or planning for, a significant earthquake.
Asset & Asset Performance Data	WSAA	✓		This project delivers a Reference Manual which documents asset data required by water utility asset managers to undertake effective asset management. The information will assist water utilities to identify what information they need to manage their assets including reporting against asset based regulated and business KPIs and analysis of asset performance.
Developing Levels of Service & Performance Management Guide	NAMS			
Water Utility Service Performance and Benchmarking	Opus			
Water NZ National Bench Marking	Water NZ			
Life Cycle Analysis of Water Networks	CSIRO			

PROJECT	ORGANISATION	INTERVENTION METHODOLOGY	EVIDENCE BASED DECISION	DETAIL
Design Guidelines 43	SCIRT	✓		Capital rationing process based on level of service / asset performance

PROJECT	TITLE	PROJECT TYPE		IMPLEMENTATION PR	IORITY	WHO	TIMING		PROJECT HOURS
NO.	Pine Performance		EASE	LEVEL OF IMPORTANCE	LEVEL OF IMPACT		DURATION	START- DATE	ESTIMATE
10.1_v1	Pipe Performance Measures	Evidence Based Decision	1 1 1 Consultant						800
What	t A specification that sets out pipe performance measures and how they should be applied and used to provide justification for investment decisions								ecisions
Why	Optimised total exp	enditure by providing	the appro	opriate actions at the rig	ht time				
Approach	Review pipe fai focus	ilures data within Nev	v Zealand	and Internationally to id	entify key indicato	ors for assessing	performance wit	h a LoS/Comm	unity and financial
	Develop a specification for key performance indicators (KPIs) and parameter definitions (Condition Type – burst frequency, blockages) (Performance Type – Water quality failures, customer complaints, environmental impact)								
	Provide provisional weightings for each parameter and test i.e. burst frequency (15%), blockages (30%), Overflows (50%)								
	Develop a pipe	performance grading	system as	s a measure of the perfo	rmance of the ass	set and its ability	to maintain ade	quate levels of	service

The Implementation Plan

The implementation plan has been developed to determine level of priority based on the three measures discussed previously; ease, level of importance and level of impact, as presented in Table 1.

To support the delivery and funding of projects they have been grouped into work packages, centred on a common theme or where projects are linked together to provide a combined outcome i.e. pipe inspection.

Table 1 - Project Implementation Plan

PROJEC T NO.	PROJECT	ТҮРЕ	IMP	LEMENTATION PI	RIORITY	WORK PACKAG	PROJEC T
i ino.			EASE	LEVEL OF IMPORTANC E	LEVEL OF IMPACT	E	PRIORIT Y
5.1	Pipe inspection and condition assessment framework	Intervention Methodology	1	1	1	А	1
5.3	Pipe sample recovery and data management	Intervention Methodology	1	1	1	А	1
5.2	Pipe inspection manual	Intervention Methodology	1	1	2	А	2
5.4	Pipe condition technology	Intervention Methodology	2	1	2	В	2
6.1	Definition of useful life	Intervention Methodology	1	1	1	С	1
6.2	Standard framework for application of remaining useful life	Intervention Methodology	2	1	1	С	1
6.3	Useful life deterioration curves	Evidence Based Decision	2	1	1	С	1
4.1	Definition of pipe failure	Intervention Methodology	1	1	1	D	1
4.2	National pipe failure database	Intervention Methodology	2	1	1	D	1
4.4	Vulnerability to certain risk events	Intervention Methodology	2	1	1	Е	1
4.3	Likelihood of failure deterioration curves	Evidence Based Decision	2	1	1	Е	1
4.5	Spatial tools for assigning	Intervention	2	1	1	E	2

PROJEC T NO.	PROJECT	TYPE	IMP	LEMENTATION PI	RIORITY	WORK PACKAG	PROJEC T
. THO			EASE	LEVEL OF IMPORTANC E	LEVEL OF IMPACT	E	PRIORIT Y
	vulnerability and likelihood of failure	Methodology					
7.3	Pipe procurement guidelines	Intervention Methodology	2	2	2	F	2
7.4	Non-price attributes of pipe materials and methods	Intervention Methodology	2	1	1	F	2
7.5	Standard installation methods	Intervention Methodology	1	2	1	F	2
7.6	Standard cost of pipe installation	Intervention Methodology	2	1	2	F	2
10.1	Pipe Performance Measures	Evidence Based Decision	1	1	1	G	1
10.2	Operational and maintenance Rates	Intervention Methodology	2	1	1	G	1
10.3	Life-cycle cost prediction	Evidence Based Decision	2	1	1	G	1
2.5	Network resilience assessment methodology and improvement opportunities	Intervention Methodology	2	1	1	Н	2

Work Package

The packages of work have been aligned to the metadata schema and present the order each project should be carried out in.

WORK PACK	(AGE				
	А	5.1 Pipe Inspection & Condition Assessment Framework	5.2 Pipe Inspection Manual	5.3 Pipe Sample Recovery & Data Management	
CONDITION	В			5.4 Pipe Condition Technology	
	С	6.1 Definition of Useful Life	6.2 Standard framework for application of remaining useful life	6.3 Useful Life Deterioration Curves	
REPAIRS & MAINTENANCE (OPERATIONS	D	4.1 Definition of Pipe Failure	4.2 National Pipe Failure Database		

WORK PACKAGE		PRIORITY			
VULNERABILITY / RISK	E		4.4 Vulnerability to Certain Risk Events	4.3 Likelihood of failure deterioration curves	4.5 Spatial Tools for Assigning Vulnerability & Likelihood of Failure
FINANCIAL PERFORMANCE	F	7.3 Pipe Procurement Guidelines	7.4 Non-Price Attributes of Pipe Materials and Methods	7.5 Standard Installation Methods	7.6 standard Cost of Pipe Installation
SERVICE PERFORMANCE	G	10.1 Pipe Performance Measures	10.2 Operational & Maintenance Rates	10.3 Lifecycle Cost Prediction	
RESILIENCE	Н	2.5 Network Resilience Assessment Methodology & Improvement Opportunities			

Quick Wins

The initial literature search identified a series of available polices, guidelines and documentation which will support the early implementation of part of the pipe renewals framework. This existing knowledge can be captured, tailored and developed to support the immediate phasing of some of the priority projects, as listed below:

- Pipe Inspection and condition framework There is currently a high level of understanding of AC and gravity pipelines based on the availability of documentation, such as the 'Pipe Inspection Manual 3rd Edition' and the 'National AC Pressure Pipe Manual' both currently in the process of being updated. There are also trusted condition assessment practices being used within New Zealand such as Pipe CT scanning to determine remaining useful life.
- Pipe sample recovery and data management Practices and training for contractors in the water industry have been developed to recover samples in a safe and consistent manner. Data management tools are also available for data cleansing and data collection.
- Useful life deterioration curves Data exists in the form of the national pipe sample database predicting remaining life based on individual pipe samples. A materials cohorts table also exists for a range of 3 water pipe materials, this could be developed further to include expected life.
- Definition of pipe failure and National pipe failure database Similar databases exist in the UK and the US which could be used and/or developed to suit the needs of the NZ water industry. This international knowledge could also be used to support the development of deterioration curves and standard useful life.
- Pipe performance measures A series of documents are available within NZ and internationally on performance measures. The knowledge is extensive varying from national performance measures, to levels of service and community engagement guidelines, and research with the seismic resilience of three waters network delivery, following the Canterbury earthquake.

Financial Performance – There is an opportunity to run this project stream in parallel to other projects, as the resources (contractor led) required are separate and do not affect the delivery of other projects.

Summary

This Pipe Renewals report sets out a framework which is aligned to the New Zealand Metadata Standards, taking into account existing knowledge and practices, and presents a roadmap for implementing improvements in knowledge and practice.

The roadmap presents 46 project initiatives and one integrating decision support framework that could be implemented over the next three years. The Committee discussed the first draft of the Pipe Renewals framework and highlighted the need to prioritise projects, as the proposed implementation plan was considered to extensive. Completion of the integrating decision support framework will allow this ongoing.

An implementation plan has been developed to determine level of priority for each project based on three measures; ease, level of importance and level of impact. To support the delivery and funding of projects these projects have been grouped into work packages.

The initial literature search identified a series of available polices, guidelines and documentation which will support the early implementation of part of the pipe renewals framework. Based on existing knowledge and priority it is recommended the following projects are progressed first:

- Decision Support Framework
- Resilience
- Pipe Inspection and condition framework
- National Pipe Database
- Pipe sample recovery and data management
- Useful life deterioration curves
- Definition of pipe failure and
- Pipe performance measures

