SEISMIC BEHAVIOUR OF RECTANGULAR **DOUBLY REINFORCED CONCRETE WALLS** UNDER BI-DIRECTIONAL LOADING

A. Niroomandi, S. Pampanin, R. Dhakal & Mohammad Soleymani Ashtiani **Department of Civil & Natural Resources Engineering**

Statement of the problem

The recent earthquakes in Chile and New Zealand led to a significant number of wall failures (Kam et al., 2011). Some of these failure modes involved out-of-plane displacements, which could potentially be affected by directional excitation.

Numerical study

Numerical study is performed using Finite Element (FE) Analysis by DIANA and has three steps:

1) Verify the FE model with the experimental results (both under uniand bi-directional loading)

Force-displacement curves, FE analyses vs experiment (Kabeyasawa et al. (2014), (a) uni-directional and (b) bi-directional loadings

Failure modes observed in the 22 Feb 2011 Canterbury earthquake (Kam et al. 2011)

There is a global concern on the contribution of bi-directional loading on these failure modes. So far, the effect of bi-directional loading on the design/assessment of rectangular shear walls is ignored.

Purpose of research

- Identify the key parameters influencing the seismic performance of rectangular RC shear walls under bi-directional loading.
- Assess if bi-directional loading can change the damage/failure mode expected in uni-directionally loaded walls, and, if yes, what are the likely changes.
- Improve the understanding of the traditional distinction between columns vs. wall.
- Investigate load path effects on rectangular shear walls.
- Simulate the possible failure mode(s) that can be activated in shear walls due to bidirectional loading in the lab.

Project outputs

- Develop a simplified analytical/mathematical method to predict the drift capacity of rectangular RC shear walls taking into account the effect of bi-directional loading.
- Verify the reliability of current (national and international) code-based design requirements for walls subject to more realistic cyclic loading regimes.
- Suggest recommendations/guidelines (based on experimental and analytical/numerical evidences) to improve current practice (taking into account bidirectional loading/response) for both the design of new walls and the assessment of existing ones, to assist engineers in their daily practice.

Previous studies

There is limited study on rectangular RC shear walls under bi-directional loading.

- Reduction in plastic deformation capacity

Crack pattern Equivalent Von Mises strain contours

Failure pattern, experiment (Kabeyasawa et al. 2014) vs FE analysis

- 2) A parametric study with the purpose of identifying the key parameters influencing the seismic performance of rectangular RC walls under bi-directional loading and to design the specimens for the experimental phase.
- Blind predictions of the wall specimens planned to be tested in the lab with possible failure modes that can be activated due to bidirectional loading.

Experimental study

The main purpose of the experimental study is to observe the possible type

- Reduction in hysteretic energy dissipation capacity
- Higher axial strain in the boundary elements
- Heavier damage rates in terms of crack widths and cover concrete crushing

Funded by industry to deliver solutions to industry identified needs.